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Abstract

Interactive, immersive virtual environments allow observers to move freely about
computer generated 3D objects and to explore new environments. The effectiveness
of these environments is dependent upon the graphics used to model reality and the
end-to-end lag time (i.e., the delay between a user’s action and the display of the result
of that action). In this paper we focus on the latter issue, which has been found to
be equally important as frame rate for interactive displays. In particular, we analyze
the components of lag time resulting from executing a finite element simulation on a
multiprocessor system located in Argonne, Illinois connected via ATM to the interactive
visualization display located in San Diego, California. The primary application involves
the analysis of a disk brake system that was demonstrated at the Supercomputing 1995
conference as part of the Information Wide Area Year (IWAY) project, which entailed
the interconnection of various supercomputing centers via a high-bandwidth, limited-
access ATM network. The results of the study indicate that the major components
of the end-to-end lag are simulation, synchronization, and rendering times; the use of
the ATM network resulted in the network time comprising only a small fraction of the

end-to-end lag time.



1 Introduction

Interactive, immersive visualization allows observers to move freely about computer-generated
three-dimensional objects and to explore new environments. This technology can be used to
extend our perception and understanding of the real world by enabling observation of events
that take place in spaces that are remote, protracted or dilated in time, hazardous, or too
small or large to view intricate details. The resulting three-dimensional virtual environment
can be a distortion of reality projected onto a physical framework that enables the display of
non-visual, physical information, such as temperature, velocity, electric and magnetic fields,

and stresses and strains.

Virtual reality strives to be a more natural user interface to complex data, allowing the
scientist to focus on the analysis of the data rather than manipulation of the analysis environ-
ment [Bishop et al., 1992]. The human senses are more accustomed to the three-dimensional
world; the ability to process three-dimensional spatial information has been honed over many
years of evolution [Kalawsky, 1993]. In engineering, this technology may be incorporated into
the product design cycle, allowing virtual prototyping and testing of products prior to their
physical construction. Hence, interactive, immersive three-dimensional visualization is an

important medium for scientific applications.

Interactive, immersive visualization of scientific simulations involves four major subsys-
tems: graphics, display, simulation, and communications. The descriptions of these subsys-
tems particular to our system are as follows. The graphics subsystem performs the calcu-
lations needed to render the objects used in the display. The display subsystem consists of
the projection screen, projectors, interactive devices, and tracking sensors needed to phys-
ically realize the virtual environment; the user interacts with the virtual objects via such
display subsystem devices as a head tracker or hand-held wand (similar to a mouse). The
simulation subsystem performs the calculations for the interactive analysis of the scientific
phenomenon. Because phenomena of interest often require complex models to capture dy-
namic interactions, parallel computation usually is needed to reduce the execution time.
The last subsystem consists of the connections used to communicate information between
the user (via the display) and the graphics system and between the graphics and simulation

systems.

A critical issue facing interactive virtual environments is the end-to-end lag time (i.e.,



the delay between a user action and the display of the result of that action.) Like any closed
loop adaptive system, if the lag is too great, users find it difficult to maintain fine control
over system behavior and complain that the system is unresponsive. Indeed, Liu et. al.
[Liu et al., 1993] found lag time to be as important as the frame rate for effective use of

immersive displays.

Lag has been studied in the context of teleoperated machines, head-mounted displays,
and telepresence systems [Liu et al., 1993, Wloka, 1995]. Liu et al. [Liu et al., 1993] con-
ducted experiments on a telemanipulation system and found the allowable lag time to be
100 ms (0.1s) and 1000 ms (1s) for inexperienced and experienced users, respectively. In
[Taylor et al., 1995], the work on lag models was extended to include scientific simulations
with interactive, immersive environments. That work, however, focused on simulations ex-
ecuted on one processor; multiple processors for the simulations were not used or analyzed
in the lag model. Further, all of the computer components were located at one site, inter-
connected via a local area network. The goal of this paper is to analyze the components of
lag resulting from simulations executed on multiprocessors connected to the virtual environ-
ment via wide area networks. With the emergence of high-speed networks and distributed
computing resources, the frequency of remote access and distributed collaboration is rising

rapidly.

We have conducted an extensive case study of a visualization system to display the
results of a finite element simulation of a contact-impact problem, in particular a disk brake
system. This application was demonstrated at the Supercomputing 1995 conference as part
of the Global Information Infrastructure Testbed for the IWAY (Information Wide Area
Year) project. The display system consisted of an ImmersaDesk?™

CAVE'™ (Cave Automatic Virtual Environment) [Cruz-Neira et al., 1993]. The simulation

— a single wall of a

was executed on the IBM SP located at Argonne National Laboratory; the display system
was located at the San Diego Convention Center. The IBM SP was connected to the display
system via an ATM OC-3c network as part of the IWAY project. Although our analysis is
specific to this context, the concepts presented in this paper can be extended easily to other

scientific applications.

To understand the contributors to lag, we instrumented all major processes in the system
and constructed a performance model of the contributors to end-to-end lag: rendering,

tracking, local network connections to the parallel system, parallel simulation, and various



types of synchronization lags. Our lag model decouples the viewpoint lag (not involving the
simulation) from the interaction lag (using the simulation results). Our analysis indicates
that the major component of viewpoint lag is the rendering time. For interaction lag, the

majority of the time is comprised of simulation and synchronization times.

The remainder of the paper is organized as follows. In §2, we discuss previous work,
followed by an outline of the supercomputer visualization environment in §3. The general
model for end-to-end lag is given in §4, followed by the case study’s findings in §5. This is
followed by a discussion of methods for reducing the lag in §6. Finally, we summarize our

results in §7.

2 Previous Work

In [Wloka, 1995], Wloka presents a thorough analysis of lag time in a multiprocessor virtual
reality system; the multiprocessors execute the calculations necessary to render an image.
The focus is on viewpoint lag. He identifies the various sources of lag time: input device
lag — the time required to obtain position and angle measurements for the input device,
application lag — application-specific processing of the input device mechanism, rendering
lag — the time to render and display the data, synchronization lag — the average time the
sample is waiting between processing stages, and frame-rate induced lag— the time between
changes in the display. In Wloka’s system, the application-specific processing is directly
dependent on one user input device. In contrast, we analyze an existing system with two
input devices: a head tracker (which affects the viewpoint lag) and a wand (which affects the
viewpoint and interaction lags). Methods for reducing the lag in our system must consider
the relationship between the two lags. Further, our system includes a parallel system for
simulation and a shared-memory multiprocessor for rendering, interconnected via a wide
area network. Therefore, we consider two additional sources of lag: the network lag and

simulation lag.

In [Mine, 1993], Mine characterizes the relative performance of magnetic tracking tech-
nologies, including two magnetic trackers from Ascension Technology and two from Polhe-
mus. This characterization focused on reducing end-to-end delay in head-mounted systems,
with emphasis on tracking lag; no attention is given to other sources of lag. In contrast, we

consider all the sources of lag.



Methods for reducing lag are an active area of research. Such methods include pre-
diction [Deering, 1992, Friedmann et al., 1992, Liang et al., 1991], time-critical computing
[Funkhouser et al., 1993, Holloway, 1991, Wloka, 1993], and use of parallelism. Prediction
methods use extrapolation to reduce tracker lag by predicting future input data based upon
past data. These methods assume the other components of lag have constant times. This
is generally not the case, especially for systems that include scientific simulations on su-
percomputers. Time-critical computing trades computation time for computation accuracy,
which is not advisable for directly reducing lag. Parallelism reduces the lag by increasing
the computing resources used for the computation. Our system uses exploits the parallelism

in the simulation and rendering calculation.

3 Visualization and Simulation Environment

Any study of virtual environment overheads presumes some basis for experimentation. Our
environment for interactive, immersive visualization and simulation consisted of a 128-node
IBM SP system located at Argonne National Laboratory and a ImmersaDesk’? located at
the San Diego Convention Center. Figure 1 shows the interconnection of the hardware and

software components, which are described in detail below.

3.1 Display Component

The ImmersaDesk?™ | the display component, creates a wide field of view by rear-projecting
stereo images on a 4x5 foot translucent panel tilted at a 45 degree angle; see Figure 2. This
ETM7

display system is a lower cost, more portable, and smaller alternative to the CAV a

room composed of rear-projection screens [Cruz-Neira et al., 1993]. The ImmersaDesk’™
provides the illusion of data immersion via visual cues, including wide field of view, stereo
display, and viewer-centered perspective. A Silicon Graphics (SGI) Power Onyx computes
the stereo display, with a resolution of 1024 x768 for each image. The Onyx alternately
draws left and right eye images at 96 Hz, resulting in a rate of 48 frames per second per
eye. These images are sent to an Electrohome video projector for display. Infrared emitters

are coupled with the projectors to provide a stereo synchronization signal for a CrystalEyes

LCD glasses worn by each user. These glasses have a sampling rate of 96 Hz that is matched



to the projection system; the eyes and brain fuse the alternate left and right eye images to

provide stereo views.

Tracking is provided by an Ascension SpacePad unit with two inputs. One sensor tracks
head movements; the other tracks a hand-held wand. These sensors capture position and
orientation information on head and wand movements at rate of 10 to 144 measurements
per second [SpacePad, 1995]. The existing system is configured to operate in the range of

100 measurements per second. The buttons on the wand are sampled at a rate of 100 Hz.

The location and orientation of the head sensor are used by the SGI Onyx to render
images based on the viewer’s location in the virtual world. Hence, subtle head movements
result in slightly different views of the virtual objects, consistent with what occurs in reality.
The wand has three buttons and a joystick that are connected to the Onyx via an IBM PC,
which provides A/D conversion, debounce, and calibration. Other observers can passively

share the virtual reality experience by wearing LCD glasses that are not tracked.

3.2 Graphics Component

The SGI Onyx is a shared-memory multiprocessor with a high-performance graphics subsys-
tem. The system used in our experiments had 128 MB of memory, 10 GB of disk, four R4400
processors and three RealityEngine2 graphics pipelines. Each RealityEngine2 has a geom-
etry engine consisting of Intel i860 microprocessors, a display generator, and 4 MB raster
memory [SGI]. The Onyx is used to drive the virtual environment interface as discussed
above. The ImmersaDesk(TM), however, uses only one RealityEngine2 graphics pipeline
connected to a Electrohome Marque 8000 high-resolution project to project images onto the

one translucent screen.

The visualization code executed on the SGI Onyx consists of three processes, main, ren-
dering, and tracking, that manage, respectively, communication with the parallel simulation,
calculations for surface graphics, and management of interactive commands. The code is ex-

plained further in §4.



3.3 Simulation Component

The simulation component consists of a 128-processor IBM SP with a high-performance
input/output system. Each SP node has 128 MB of memory and a 1 GB local disk and was
connected to other SP nodes via a high-speed network. Some of the nodes were equipped
with ATM and Ethernet interfaces. Collectively, the SP system is also connected to 220 GB
of high-speed disk arrays and an Ampex DST-800 automated tape library.

3.4 Interconnections

The interconnections used in the system consists of the devices used by a scientist to interact
with the display system and the interconnection of the simulation and graphics components.
The scientist controls the field of view by changing his or her head position or manipulating
the wand buttons and joystick; the simulation is also modified via the wand. The simulation
and graphics components are interconnected via the ATM OC-3c (peak bandwidth of 155
Mbps) used with the IWAY project.

4 Performance Model

The performance model presented in this section is consistent with that given in [Taylor et al.,
It is presented here for completeness. Given two input devices, there are two classifications

of interactions:

e movement of the head tracker: this type of interaction causes a change to the field of

view; the data sent to the simulation process is not modified — this lag is defined as

Qview

e movement and clicking of wand buttons: this type of interaction can change the field of
view or the simulation process, dictated by the code-defined wand buttons and joystick
— this lag is defined as Qjuteract- In this paper, the focus is on wand modification to

the simulation process to distinguish the two lags.

!This input/output system eventually will be used for recording and playback of visualizations. However,

that work is beyond the scope of this paper.

1995.



The operations that are executed based upon a user interaction are the following:

1. The sensors generate the position and rotation of the header tracker and wand; the

personal computer records the position of the wand buttons (7}.q.) [input device lag]
2. The wand information is read by simulation side (7}..q) [network lag]

3. The scientific application is simulated on the multiprocessor system (Z;,,) [simulation

lag]

4. The update from the simulation is sent to the graphics process (Tyrite) [network lag]

5. The graphics process uses the data from the simulation process and the tracker process

to render a new image (T, enger) [rendering lag]

In addition to the above lags there is also synchronization lag as described previously. We
consider four sources of synchronization lag: (1) Tyync(rr): the time from when the tracker
measurement is available until the data is read by the rendering process, (2) Tyyne(rs): the
time from when the rendering process has read the updated wand values until the values
used by the simulation process, (3) Tyync(sr): the time from when the data is available from
the simulation process until written to the rendering process, and (4) Tyync(r) the time from

when the data is available in the frame buffer and the image is available on the screen.

Given the above sequence of operations, the following equations represent the lag time
for the head tracker (Quiew) and the wand (Qinteract):

Qm’ew = Tirack + Tsync(TR) + Trender + Tsync(F) (1)
Qinteract = Tyrack + Tsync(TR) + Tsync(RS) + Tread + Tsim + Twrite +
Tsync(SR) + Trender + Tsync(F) (2)

The derivation of these equations is discussed in the following section.

4.1 Lag Sources

The components of Qe (or Viewpoint Lag) and Qinereet (0r Wand/Simulation Interaction
lag) are depicted pictorially in Figure 3. All of the processes run asynchronously. Recall

from §3 that the graphics components consists of three processes: main, rendering and

10



tracking; the simulation consists of one process. The main process runs on the Onyx and
is responsible for forking the rendering and tracking processes (this is done only once) and
communicating with the simulation process. Hence this process has three states: writing
data via the network to the simulation process, reading data from the simulation process,
and copying the new data to the SGI shared memory to be used by the rendering process.
The one rendering process, Render0, reads the tracking data from the tracking process uses

this data to render the left and right eye images.

The tracker process is responsible for continuously reading the tracking information from
the serial SGI ports, scaling the data, and writing the data into a region of memory for
reference by Render0. The tracker process is also responsible for initialization of the tracker
and wand controls. Like the other processes, the tracker process operates asynchronously,

reading tracker data as fast as the tracking system can produce it.

For the case of the CAVE(TM) display system, images can be displayed on four screens —
the three surrounding walls and the floor. For this case, there will be four rendering processes
forked by the main process and only rendering process Render(0 will obtain the tracking data.
This is done to insure that all four rendering processes are performing calculations in response
to the same tracker data. All four rendering processes synchronize at the beginning of each

frame.

The scientific simulation executed on the IBM SP system consists of three states: exe-
cuting the simulation, sending data to the main process, and receiving data from the main
process. Hence the simulation processes are interrelated to the graphics processes. The

effects of these processors on the view and interaction lags are given below.

4.2 Lag Equations

The diagram in Figure 3 illustrates all the sources of lag that are used in the performance
model. Assuming a wand and tracker event occurs as indicated in the diagram, we can trace
the lag times that result in a scene update due to a head event (indicated in the diagram)
and a scene update due to a wand event (indicated in the diagram). Head tracker events
are distinguished from wand events in the header segment of the data sent to the tracker

process.

When a head tracker event occurs, the tracker process reads the values from the SpacePad
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ports, performs the calibration, and places these values in shared memory. The time to
execute these operations is given by T}, in Equations (1) and (2). Typically, the tracker
process is sampling the sensors faster than the rendering process can render a new display.
Only the last sample obtained prior to the start of a new rendering cycle is read by the
rendering process. Hence, the average “wait time” or synchronization lag is half the average
tracker update time. This time corresponds to T, .(rr) in the equations. The tracker sample
is used by Render0 to generate a new image, corresponding to 7;.c,q4er in the equation. When
the new image data is available, it may not be displayed immediately. There is some wait time
due to the frame rate and the scan rate of the projectors. The average of this synchronization
time is half the frame and scan times per eye for stereo; this time is given by Ty, (r) in the
equations. The scene is now updated in response to the head tracker event. The summation

of these four terms compose the viewpoint lag or Quiew.

When a wand tracker event occurs, the sensors are again sampled by the tracker process
and read by Render0 process. This task corresponds to Tiqcker and Tiynerr) as described
above. At this point, the analysis takes a different path from that taken with the viewpoint
lag. Once the wand position has been read by Render0 process, it is used by the main
process to forward to the simulation process. This wand data may not be read immediately
by the simulation process. The average time that this data “waits” to be used is equal to
half the time of the simulation process. This synchronization time corresponds to Tyc(rs)
in Equation (2). The actual communication of these values to the simulation side is given
by Treqq- The simulation time is denoted by the term 7%;,,. The updated simulation values
are then sent to the rendering process, denoted by the term T,,.;;.. After the data has been
sent, it may not be used immediately by the rendering processes. The average of this “wait”
time is equal to half the average of the rendering time; this synchronization time is denoted
as Tsyne(sr)- Omnce the values have been read by the rendering processes, a new image is
rendered and displayed corresponding to Trendger + Tsyne(r).- The summation of these nine

terms compose the interaction lag or Qjnteract-

5 Case Study: Analysis of a Disk Brake System

To assess the performance of the combined supercomputer/visualization system described

in §3, we analyzed a finite element simulation of an automotive disk brake system. Braking
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times generally are on the order of seconds or tens of seconds. Each time step, which is
generally on the order of a few milliseconds, can require tens of minutes of execution time on
a single processor. Hence, parallel systems are necessary for this application. Some critical
issues related to automotive disk brakes are the heating and stressing of the material used for
the disk and pads, the wearing on this material, and the pitch of the sound that occurs when
the pads are applied to a rotating disk. The virtual environment interface to the analysis
consists of a disk brake in a Porsche; see Figure 4. Using the virtual environment’s wand, a
scientist can manipulate the virtual environment to focus on various features (for example
areas of high stress or high temperature) of the brake system. Further, while viewing the

features, the scientist can use the wand to modify the simulation to test different conditions.

Initial transients, such as closing the brake pads, take place in a few milliseconds, whereas
the actual braking occurs over the longer time when the pads are clamped on the rotor.
Stable-implicit time integration is required to model this long term braking. The disk brake
system is modeled as a finite element problem using the FIFEA (Fast Implicit Finite Element
Analysis) code developed at Argonne National Laboratory. This code performs dynamic
analysis of solid structures using implicit finite element methodology. FIFEA employs a
pseudo-rigid body formulation to decouple the large displacements and rotations due to
rigid body motion from the small relative displacements and strains associated with elastic
deformation and thermal stress. FIFEA can detect intermittent contact and calculate friction
forces and heat generated at the contacts. The complete disk brake system consists of
3790 elements, 5636 nodes, and 22,544 degrees of freedom (4 degrees of freedom per node).
Figure 5 is the finite element mesh of the disk brake. Given the problem size, the finite
element simulation was executed on 8 processors of the IBM SP. Figure 6 shows an example

of the temperature distribution of a rotating disk as modeled by FIFEA.

FIFEA makes extensive use of the PETSc (Portable, Extensible, Toolkit for Scientific
computation) [Balay et al., 1995] to do linear algebra and to manipulate sparse matrices
and vectors. FIFEA and PETSc use the MPI library [Gropp et al., 1994] for communication
between the IBM SP processors. One IBM SP processors sends and receives results to and

from the SGI Onyx using the CAVEcomm library [Disz et al., 1995].
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5.1 Performance Instrumentation

To understand the temporal interaction patterns among the graphics software libraries, the
SGI Onyx, and the finite element software on the IBM SP, we instrumented the graph-
ics library and finite element software using the Pablo performance analysis environment
[Reed et al., 1995, Reed et al., 1996]. The Pablo environment consists of (a) an extensible
performance data metaformat and associated library that separates the structure of perfor-
mance data records from their semantics, allowing easy addition of new performance data
types, (b) an instrumenting parser capable of generating instrumented SPMD source code,
(c) extensible instrumentation libraries that can capture event traces, counts, or interval
times and reduce the captured performance data on the fly, (d) graphical performance data
display and sonification tools, based coarse-grain graphical programming, that support rapid
prototyping of performance analyses, and (e) a virtual environment for real-time display of

dynamic performance data.

Using the Pablo environment, we instrumented the graphics library to capture tracker
updates, drawing of left and right eye display frames, and internal library lock and buffer
management. In addition, we instrumented the finite element code to capture communication
between the SP and SGI Onxy using the CAVEcomm library and entry/exit to selected
portions of the application code. Together, this instrumentation allowed us to quantify
the relative contributions of tracking, rendering, remote communication, and application

computation to lag.

5.2 Timing Data

Table 1 is the average time for each lag source for the simulation executed on 8 IBM SP
processors with IWAY interconnection between Argonne and the San Diego Convention
Center. The network values in parentheses correspond to the values collected using the
Internet connection between the IBM SP at Argonne and the SGI Onyx at University of
[linois at Chicago. The mean lags and their standard deviations are based on 30 minutes
of elapsed time. The values with no corresponding standard deviations correspond to the
sources of synchronization lag, which are derived from other values. The Ty, value is
based on a frame rate of 48 frames per second per eye and an average scan rate of 120 Hz

for the Electrohome projectors. The average of this synchronization lag is equal to one half
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of the frame-induced time.

The total network time, the summation of T}..q and Ty,ie, corresponds to the time to
send the temperature data from the IBM SP to the SGI Onxy, modify the data structures
on the SGI Onyx, and send the wand data back to the IBM SP. In particular, the time to
send the simulation data from the IBM SP to the buffers is equal to T, and the time to
receive the simulation data on the SGI Onxy, process it, send the wand data, and receive the
wand data on the IBM SP side is equal to T,eqq. For the IWAY, the total time is 822.26 ms;
for the Internet the total time is 1360.57. This reduction is significant given that the data
using IWAY went from Illinois to California and through the myriad connections in the San
Diego Convention center as compared to going between two sites in the same state with the

Internet.

Recall from §1 that Liu et al. [Liu et al., 1993] conducted experiments on a telema-
nipulation system and found the allowable lag time was 100 ms and 1000 ms for inexpe-
rienced and experienced users, respectively. The total lag times for the 8 processor case
are Quiew = 129.58 ms and Qjnteract = 57370.05 ms. The view lag is within the allowable
tolerance, but the interaction lag is over one order of magnitude beyond the tolerance for
experienced users and two orders of magnitude for the inexperienced users. As expected,
81 percent of the view lag is due to the rendering component. For the interaction lag, the
simulation and synchronization times compose over 95Methods for reducing these times are
discussed in the following section. The methods used to reduce the simulation time will also
result in a reduction of the synchronization time, due specifically to a reduction to Tysync(rs)
(recall that Tyyne(rs) is approximated as half Tyim). Hence methods to reduce the simulation

time will have a significant impact on reducing the interaction lag.

6 Lag-Reducing Methods

In this section we consider methods for reducing the end-to-end lag and highlight areas
of future research. We focus on the rendering, simulation and synchronization lags, which
can be major factors affecting the end-to-end lag as discussed in the previous section. In

particular we focus on scene complexity, parallelism, and phase tuning.
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6.1 Scene Complexity

The rendering lag is a function of the scene complexity and the geometry transformations.
In general a scene consists of essential objects affected by the simulation and the background
used to give the scientist the illusion of being in the remote environment. For the automotive
disk brake application, the scene consists of a shaded or wire frame version of the Porsche,
the rotating tires, and the disk with two pads. The image of the car and tires provides the
context for the disk brake, conveying position and relative size of the brakes. These two
images, the car and the tires, are not necessary for the analysis of the brake system. The
elimination of these images can reduce the rendering time, thereby reducing the view lag,
without sacrificing the interface to the simulation. Further research is necessary to develop a
performance model of the rendering time based upon the essential and nonessential objects
in a scene. This model can be used to determine the scene to be used for a given application

based upon viewpoint lag constraints.

6.2 Parallelism

The simulation time was the major component of the interaction lag for the automotive disk
brake system. This lag can be reduced by the use of more processor nodes. The number of
processors nodes to be used for the problem is dictated by the interprocessor communication
requirements. Further research is necessary to identify the communication requirements
dictated by the algorithm used in the FIFEA code and the domain decomposition scheme

and investigate methods for reducing these requirements.

With the IWAY project, various supercomputer centers are interconnected by ATM as
described previously. This project has made possible the use of a large number of processors
from the aggregation of the machines at the different sites. Users are no longer limited
by the number of processors at any given site. Further research is also necessary develop
decomposition schemes for a network of supercomputers, which involves communication costs

of the local network as well as the wide area network.
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6.3 Phase Tuning

The synchronization lags were another major component of the interaction lag. In particular,
the synchronization lag between the rendering and simulation, Tyu.(rs), dominated the
synchronization lag. Recall that this lag corresponds to the interval from when the wand
data has been read by the rendering process until it is used by the simulation process. Given
that the wand updates from the scientist can occur at any time, the average value of Tyy,c(rs)
is equal to half the simulation time. One possible method for reducing this lag is to “phase
tune” the various asynchronous processes. This may involve using predictors, based upon
previous interactive inputs, to be used by the simulation process to estimate the wand inputs
at the optimal time to reduce the synchronization lag. Another option involves adding a
delay mechanism to the various asynchronous processes that can be tuned to reduce the
phase miss match, thereby reducing the synchronization lags. Further research is necessary

to explore these options and identify effective methods for reducing the synchronization lags.

7 Summary

In this paper we analyzed the lag time of a integrated supercomputer applications with
interactive, immersive virtual interfaces. We conducted an extensive case study of a system
used to display the results of a finite element simulation of the analysis of an automotive disk
brake system. The simulation was executed on the IBM SP at Argonne National Laboratory
and the virtual interface was available at the San Diego Convention Center. The simulation
and virtual system were interconnected via ATM in conjunction with the IWAY project.
The analysis entailed the comparison of a system using ATM versus Internet. The results of
the study indicated that the view lag was within the allowable tolerance, but the interaction
lag was over one order of magnitude beyond the tolerance for experienced users and two
orders of magnitude for the inexperienced users. As expected, 81 percent of the view lag was
due to the rendering component. For the interaction lag, the simulation and synchronization
times composed over 95the transmission time using an ATM network between Illinois and

California was approximately half of that using the Internet between two sites in Illinois.

The results of the study highlighted the importance of reducing the lag time to a tolera-

ble range — 1 s to 0.1 s. Various methods to reduce the end-to-end lag for a supercomput-
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ing/virtual system were also discussed. We considered scene complexity, parallel processing,
and phase tuning. Future work entails quantifying the impact on end-to-end lag for the

aforementioned methods.
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Table 1: Lag values (8 processor IBM SP) using IWAY with Internet values in parentheses

Lag Mean | Std. Dev. | %Quicw Y0Qinteract
Component (ms) (ms)
Tirack 5.85 2.63 4.51 0.01
Toner e 2.9 — 2.5 0.005
Tronder 105.81 11.01 81.66 0.18
Toyne( i) 18788.16 - NA 32.75
Tread 820.83 49.38 NA 1.43
(1358.57)
Tsim 37576.31 581.5 NA 65.50
Twrite 2.26 0.17 NA 0.004
(2.00)
Tognels i) 52.91 — NA 0.09
Ty 15.0 — 11.58 0.03
Total: — — | 129.58 ms | 57370.05 ms
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Figure 4: Virtual Disk Brake
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Figure 5: Disk Brake Finite Element Mesh
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Figure 6: Temperature Distribution (Rotating Disk)
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